QH 541.5 .C65 C71 no.CSC/ 7-97/ 001

UNITED STATES DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration COASTAL SERVICES CENTER 2234 Hobson Avenue, Charleston, SC 29405-2413

CSC Technical Report CSC/7-97/001 July 1997

NOAA CSC/CRS Cruise APR96FER: Gray's Reef Cruise

Participants:

Coastal Services Center - Coastal Remote Sensing Program Gray's Reef National Marine Sanctuary Skidaway Institute of Oceanography Grice Marine Biological Laboratory

CSC Technical Report CSC/7-97/001

NOAA CSC/CRS Cruise APR96FER: Gray's Reef Cruise

Ajit Subramaniam¹ Kirk J. Waters² Andrew W. Meredith³ Edward M. Armstrong¹ Reed M. Bohne⁴ William G. Keull² James R. Nelson⁵ Giacomo R. DiTullio⁶ John C. Brock²

¹Technology Planning and Management Corporation 2234 South Hobson Avenue Charleston, SC 29405

²NOAA Coastal Services Center 2234 South Hobson Avenue Charleston, SC 29405

³REMSA 2234 South Hobson Avenue Charleston, SC 29405

LIBRARY AUG 12 2008

National Oceanic & Atmospheric Administration U.S. Dept. of Commerce

⁴Gray's Reef National Marine Sanctuary 10 Ocean Science Circle Savannah, GA 31411

⁵Skidaway Institute of Oceanography 10 Ocean Science Circle Savannah, GA 31411

⁶Grice Marine Biological Laboratory 205 Fort John Road Charleston, SC 29412

July 1997

UNITED STATES DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration COASTAL SERVICES CENTER 2234 Hobson Avenue, Charleston, SC 29405-2413

QH 541.5 . 665 C 71 no. cscla-gatoo

This is a National Oceanic and Atmospheric Administration (NOAA) Coastal Services Center (CSC) Technical Report. The NOAA CSC Coastal Remote Sensing Program intends to publish forthcoming reports as official NOAA Technical Reports.

Abstract

The Gray's Reef National Marine Sanctuary (GRNMS) is one of the most popular recreational fishing and diving areas off the Georgia coast. Thus, primary production – the production rate of phytoplankton, the bottom of the food chain – and the water quality of this region are of great interest to sanctuary managers. These parameters impact fish populations and recreational diving. Ocean color satellites provide daily synoptic data of the region and could be a useful tool to sanctuary managers. However, for this tool to be truly useful, algorithms that relate satellite data to chlorophyll biomass, primary production, and water column visibility need to be developed and validated.

Measurements of surface chlorophyll pigment biomass, particulate absorption, dissolved organic material absorption, and spectral fluorescence were made during a cruise from April 22 to 25, 1996, in the vicinity of GRNMS. Water column profiles of temperature, conductivity, salinity, chlorophyll fluorescence, scattering, beam transmittance, upwelling radiance and downwelling irradiance were made at 16 stations.

Table of Contents

I. Introduction1
II. Objective1
III. Methods1
A. Sampling Locations.1B. Sampling Platform.1C. Sample Collection Methods Summary.2D. Sampling Gear.3E. Bottle Samples.5F. Optical Data Processing.9G. Along-Track Measurements.9
IV. Results10
A. Bottle Samples
V. Summary16
VI. References17
VII. Metadata18
A. Core Documentation18B. Citation Information20C. Data Quality21D. Metadata Reference Information23
VIII. Appendix A - Water Column Profile Data Figures
IX. Appendix B - Sub-Surface Light Field Estimation Statistics
X. Appendix C - Example Profile Header Information
XI. Appendix D - Calibration Certificates

List of Figures

Figure 1.	Station Locations	2
Figure 2.	Position of Instruments on the PRR Cage	6
Figure 3.	Cabling Diagram for the PRR Cage	7
Figure 4.	Particulate Absorption - April 22, 1996	12
Figure 5.	Particulate Absorption - April 23, 1996	12
Figure 6.	Particulate Absorption - April 24, 1996	13
Figure 7.	Particulate Absorption - April 25, 1996	13
Figure 8.	Dissolved Organic Matter Absorption - April 22, 1996	14
Figure 9.	Dissolved Organic Matter Absorption - April 23, 1996	14
Figure 10	. Dissolved Organic Matter Absorption - April 24, 1996	15
Figure 11	. Dissolved Organic Matter Absorption - April 25, 1996	15

List of Tables

Table 1.	Station Notes Indicating Date, Time, Location, Sky Conditions3	
Table 2.	Sampling Details	
Table 3.	Center Wavelengths for the PRR System	
Table 4.	Surface Chlorophyll Concentration10	
Table 5.	Surface Phytoplankton Pigment Concentration	

Acknowledgments

Ship time was donated by Gray's Reef National Marine Sanctuary. Chlorophyll*a* and High Pressure Liquid Chromatography pigment analyses were conducted by Mark Geesey, Grice Marine Biological Laboratory. The help and cooperation of other members of the scientific party and the crew of the R/V Ferrel is gratefully acknowledged. A.S. is thankful to Lauren Parker for her very patient proofing of the text and editorial suggestions.

Data Usage Constraints

Users of this data are required to provide appropriate attribution in the form of coauthorship for any publications that use this data, unless formal permission to do otherwise is granted by NOAA/CSC.

I. Introduction

Gray's Reef is one of the largest nearshore live-bottom reefs off the southeastern United States. Gray's Reef National Marine Sanctuary (GRNMS) (32°22' to 31°25'N, 80°55' to 80°50'W) encompasses 58 square kilometers (km²) of live bottom habitat and is located 32 kilometers (km) off Sapelo Island. It is a very popular recreational fishing and sport diving destination (http://www.skio.peachnet.edu/noaa/grnms.html). Thus the water quality of this region in terms of chlorophyll biomass, diver visibility, and other such factors is of great interest to the sanctuary manager. Ocean color satellites provide daily synoptic data of some of these parameters and could be a useful tool to sanctuary managers. However, for this tool to be truly useful, algorithms that relate satellite data to chlorophyll biomass, primary production, and water column visibility need to be developed and validated.

II. Objective

The objective of this cruise was to determine the optical properties and variability within GRNMS and the surrounding area.

III. Methods

A description of the sample collection methods and of instruments used is detailed in the following sections.

A. Sampling Locations

Sixteen stations were occupied during the cruise from April 22 to 25, 1996 (Figure 1, Table 1). The cruise departed Savannah, Georgia on the afternoon of April 22 and proceeded to Sapelo Sound, occupying three stations along the way. On April 23, the vessel transited from Sapelo Sound, through GRNMS, to a Navy tower off shore, occupying seven stations along the way. April 24 was intended to include a high density sampling of GRNMS, but this was prevented by heavy weather. Three stations, from outside Altamaha Sound to inside the GRNMS, were sampled instead of the intended 10. On April 25, two stations were occupied within GRNMS and a third station approximately 25 km offshore was occupied.

B. Sampling Platform

The NOAA ship *Ferrel* (R492), a 41-meter (m) steel hull, twin screw, general purpose oceanographic research vessel, was used for this cruise. The *Ferrel* is specifically designed for coastal and inshore waters, and has a movable "A-Frame" and an oceanographic winch midship on the starboard side for deployment of equipment.

C. Sample Collection Methods Summary

The Profiling Reflectance Radiometer (PRR) cage, described below, was deployed on the starboard side of the *Ferrel* from a small "A-frame" with an oceanographic winch. The "A-frame" extended approximately 1 meter off the side of the ship. The deck sensor of the PRR system was located one deck above the "A-frame" and within 5 meters of it. The sensor did not fall under a shadow as long as the sun was not on the bow of the ship. The deck cell only recorded data during a cast. An along-track system was used to log position (latitude, longitude), time, course and speed of the vessel, temperature, salinity, and spectral fluorescence. The along-track system used water pumped through the ship's seawater intake system located about 1.5 meters below the surface. *In-situ* temperature, salinity, and density were also measured at some stations with a Conductivity-Temperature-Depth (CTD) sensor. Water samples for chlorophyll biomass,

Date	Station	Lat	Lat	Latitude	Long	Long	Longitude	Total	Time	Sky	Bucket
		Deg	Min		Deg	Min		Depth	On	Conditions	SST
											(C)
4/22/96	1.1	31	57.90	31.965	-80	43.30	-80.722	15m	1552	clear	20.6
4/22/96	1.2	31	50.90	31.848	-80	52.51	-80.875	12m	1720	clear	21.7
4/22/96	1.3	31	40.35	31.673	-81	0.01	-81.000	12m	1851	clear	19.6
4/23/96	2.1	31	32.36	31.539	-81	14.05	-81.234	4m	750	clear	21.9
4/23/96	2.2	31	30.32	31.505	-81	5.11	-81.085	7m	947	clear	19.6
4/23/96	2.3	31	27.86	31.464	-80	59.58	-80.993	12m	1040	clear	
4/23/96	2.4	31	26.03	31.434	-80	54.98	-80.916	15m	1202	clear	19.9
4/23/96	2.5	31	24.62	31.410	-80	50.99	-80.850	19m	1318	high clouds	19.6
4/23/96	2.6	31	23.52	31.392	-80	42.04	-80.701	20m	1500	high clouds	19.9
4/23/96	2.7	31	22.55	31.376	-80	33.98	-80.566	28m	1610	high clouds	20.0
4/24/96	3.1	31	20.12	31.335	-81	7.70	-81.128	12m	1030	clear	18.5
4/24/96	3.2	31	21.46	31.358	-80	59.14	-80.986	18m	1203	clear	17.7
4/24/96	3.3	31	23.15	31.386	-80	52.77	-80.880	20m	1315	clear	18.5
4/25/96	4.1	31	24.66	31.411	-80	53.58	-80.893	17m	910	high clds	19.0
4/25/96	4.2	31	25.01	31.417	-80	53.58	-80.893	17m	930	high clds	19.0
4/25/96	4.3	31	29.50	31.492	-80	27.23	-80.454	31m	1240	clear	19.6

Table 1. Station Notes Indicating Date, Time, Location, Sky Conditions

Lat Deg, Lat Min, Long Deg, and Long Min refer to the station position in degrees and minutes, Latitude and Longitude refer to the station position in decimal degrees. Total depth is the water depth at station, Time On is when station was occupied (EDT), and Bucket SST is the sea surface temperature measured at station.

phytoplankton pigments, particulate absorption, dissolved organic matter absorption, total suspended solids, particulate organic carbon, and particulate organic nitrogen were obtained from just below the sea surface using a Niskin bottle. Sea surface temperature was taken from a mercury thermometer mounted in a bucket dipped in the ocean for the duration of the stay at a station. The parameters measured are summarized in Table 2.

D. Sampling Gear

The PRR cage (Figures 2) contained a split PRR600s (Serial No. 9643) that measured seven channels of downwelling irradiance, seven channels of upwelling radiance, depth, tilt, roll, and temperature. A reference surface unit (PRR610 Serial No. 9644) that measured seven matched channels of surface downwelling irradiance on deck was also used. Channels 1 to 6 were narrow band (10-nanometer [nm] full width half maximum [FWHM]) centered at the indicated wavelengths, while channel 7 on the downwelling sensor and PRR610 measured broad band Photosynthetically Available Radiation (PAR) (400 to 700 nm).

PRR	-	1	1	1	-	1	1	1	1	1	1	1	-	1	1	-
CTD	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	-
TSS	5	0	Э	З	З	3	0	0	0	0	З	0	0	0	0	0
POC/ PON	3	3	3	3	3	3	3	3	3	3	3	З	3	3	0	3
ADOM	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	-
Ap	3	3	3	З	З	З	3	З	3	3	З	3	3	3	0	6
HPLC	5	1	5	1	5	2	5	1	2	5	2	2	1	Г	0	1
Chl	3	3	3	3	3	3	3	3	3	3	3	3	3	3	0	3
SamDep	surface															
PRRFile	P960422A	P960422B	P960422C	P960423A	P960423B	P960423C	P960423D	P960423E	P960423F	P960423G	P960424A	P960424B	P960424C	P960425A	P960425B	P960425C
Longitude	-80.722	-80.875	-81.000	-81.234	-81.085	-80.993	-80.916	-80.850	-80.701	-80.566	-81.128	-80.986	-80.880	-80.893	-80.893	-80.454
Latitude	31.965	31.848	31.673	31.539	31.505	31.464	31.434	31.410	31.392	31.376	31.335	31.358	31.386	31.411	31.417	31.492
Station	1.1	1.2	1.3	2.1	2.2	2.3	2.4	2.5	2.6	2.7	3.1	3.2	3.3	4.1	4.2	4.3
Date	4/22/96	4/22/96	4/22/96	4/23/96	4/23/96	4/23/96	4/23/96	4/23/96	4/23/96	4/23/96	4/24/96	4/24/96	4/24/96	4/25/96	4/25/96	4/25/96

Table 2. Sampling Details

PRRFile: file name containing the raw data acquired by the instruments in the PRR cage

SamDep: depth at which water sample was taken

Chl: chlorophyll biomass determined by fluorescence of extracted chlorophyll

HPLC: phytoplankton pigment concentration determined by High Pressure Liquid Chromatography technique Ap: absorption of particulate material

ADOM: absorption of dissolved material

POC/PON: particulate organic Carbon, particulate organic Nitrogen concentrations

TSS: total suspended solids

CTD: measurements made with a SeaBird SEACAT profiler

PRR: measurements by the instruments on the PRR cage

The numbers below each of these measurement types refer to the number of samples obtained for each of these measurements.

07/21/97

Cruise Report - APR96FER

Channel	PRR600s Downwelling	PRR600s Upwelling	PRR610
No.	Light Sensor	Light Sensor	
1	380 nm	380 nm	380 nm
2	412 nm	412 nm	412 nm
3	443 nm	443 nm	443 nm
4	490 nm	490 nm	490 nm
5	510 nm	510 nm	510 nm
6	555 nm	555 nm	555 nm
7	PAR	683 nm	PAR

Table 3. Center Wavelengths for the PRR System

The cage also contained a 10-centimeter (cm) pathlength, 660-nm Light Emitting Diode (LED)-based SeaTech transmissometer (Serial No. 664), a Biospherical Instruments Quantum Scalar Profiling sensor (QSP200, Serial No. 4443), a SeaTech light scattering sensor (LSS, Serial No. 281), and a WETLabs Wetstar chlorophyll fluorometer (Serial No. Ws3-088). Water was drawn through the fluorometer using a SeaBird pump (Serial No. 051363) running at 2,000 revolutions per minute (RPM). The data from all these instruments were multiplexed through the PRR600s such that each record contained a depth and parameters from every instrument. Figure 3 shows the cabling diagram for these instruments. The calibration history for these instruments is given in Appendix D.

E. Bottle Samples

Discrete water samples were taken from the near surface at each station using Niskin bottles. Sample volumes indicated in Tables 4 and 5 were filtered through glass fiber (GF/F) filters for chlorophyll concentration and phytoplankton pigment concentration respectively. Water was filtered on board and the filters were frozen in liquid nitrogen for later analysis in the lab. No water was taken for station 4.2 and the sample for station 4.1 was lost. The samples were cold extracted in 90-percent acetone for 12 hours in the dark and the chlorophyll concentration was determined fluorometrically with a Turner Designs AU10 fluorometer using the method of Welschmeyer (1994).

The phytoplankton pigment sample filter was cut into small pieces with a razor blade and ground in a 1.5-milliliter (mL) microcentrifuge tube with 1.5-mL 90-percent acetone (10-percent water). The micorcentrifuge tube was placed in a freezer (-20°Celcius [C]) for a minimum of two hours to extract completely. The samples were centrifuged at 0°C and 20,000g for 15 minutes using a Heraeus Biofuge 15R ultracentrifuge. After centrifugation, 0.5mL was filtered using a Nalgene nylon membrane filter (pore size 0.2 micrometer [μ m]) into an High Pressure Liquid Chromatograph (HPLC) injection vial. The sample was diluted to 60 percent acetone with the addition of 0.25mL of water. 0.5mL was then injected into the HPLC.

07/21/97

Figure 2. Position of Instruments on the PRR Cage (Figure adapted from BSI manual)

Figure 3. Cabling Diagram for the PRR Cage (Figure adapted from BSI manual)

A Hewlett-Packard 1050 Series HPLC with a Phenomonex Sphericlone ODS(2) reversephase column (250 millimeter [mm] x 4.6 mm with 5µm particles) was used with a ternary gradient to separate and identify the pigments. The three solutions were: A: Water; B: Methanol; C: 85-percent Methanol/15-percent 0.5-Molar (M) Ammonium Acetate (pH 7.6). The 41-minute gradient method was as follows:

Time %A		%B	%C	Flow Rate			
(minut	te)			(mL/minute)			
0 2		0	98	1.0			
5	2	0	98	1.0			
6	15	85	0	1.0			
10	10	90	0	1.25			
30	0	100	0	1.25			
36	0	100	0	1.9			
39	0	100	0	1.9			
39.5	2	0	98	1.5			
41	2	0	98	1.0			

A diode array detector recorded spectra every five seconds at wavelengths from 350 to 600 nm. Chromatograms were monitored at 440 nm (for carotenoids and chlorophylls) and 405 nm (for chlorophyllides, phaeophorbides, and phaeophytins). In addition, a

Cruise Report - APR96FER

07/21/97

fluorescence detector measured fluorescence at 666 nm using an excitation at 421 nm (maximized for chlorophyll *a*). The system was calibrated using known concentrations of pigments extracted from algal cultures maintained in the lab or purchased from commercial facilities. The system has been calibrated for the following carotenoids: peridinin, 19'-butanoyloxyfucoxanthin, fucoxanthin, 19'hexanoyloxy fucoxanthin, diadinoxanthin, alloxanthin, diatoxanthin, lutein, and zeaxanthin. It has also been calibrated for chlorophylls *a*, *b*, and c1+c2 (which co-elute), and the chlorophyll *a* degradation products chlorophyllide, phaeophytin, and 3 phaeophorbides. Details of the method can be found in Wright *et al.* (1991).

Sea water was filtered through baked GF/F in to a glass Erlenmeyer flask on the ship for dissolved organic matter absorption (A_{cdom}) samples. The filtrate was refrigerated in amber glass bottles that had been rinsed in distilled water and then baked in a muffle furnace at 450°C. The Erlenmeyer flask was rinsed with distilled water between samples. In the lab, the samples were filtered through 0.2-µm Nuclepore (using the first 40 to 50 mL for several rinses of the glassware). A 10-cm path length cuvette in a dual-beam spectrophotometer (Perkin-Elmer Lambda 6) was used to measure the absorption from 250 nm to 750 nm. The reference used was 0.2-µm filtered HPLC grade water. The average optical density (OD) from 700 to 750 nm was subtracted as the baseline value.

Sea water was filtered through GF/F filters for particulate absorption (A_p) samples. The filters were carefully rolled into cryovials and stored in liquid nitrogen (N_2) for subsequent analysis in the lab. The absorption spectrum was measured from 250 to 850 nm using a dual-beam spectrophotometer equipped with a scattered-transmittance accessory (end-on photomultiplier tube [PMT] with sample compartment and diffusing plate immediately in front of the PMT window [Perkin-Elmer Lambda 6]), in accordance with the SeaWiFS protocol (Mueller and Austin 1995). Details of the methods followed are described in Nelson and Guarda (1995). Beta correction for this specific instrument was determined using suspended versus filtered samples for cultured phytoplankton, and had the polynomial formulation of Mitchell (1990) and Cleveland and Weidemann (1993).

For measurement of total suspended solids (TSS), 500 to 1500 mL of sea water (volume filtered indicated in Table 6) was filtered through prerinsed, dried, and preweighed Millipore HA filters (nominally 0.45 μ m) following methods described in Strickland and Parsons (1972). Offshore stations required more water than could be filtered in the transit time between stations and hence TSS was not measured at these stations.

Sea water (volume filtered indicated in Table 7) was filtered through 25-mm diameter precombusted (450°C) GF/F filters at each station for the determination of particulate organic carbon (POC) and particulate organic nitrogen (PON). The samples were stored in a freezer following filtration in combusted glass vials. In the lab, the samples were freeze dried, placed in tin capsules, then analyzed with a Fisons NA-1500 Series 2 CNS analyzer. The standard used for these samples was 2,5 Bis(5-tert-butyl-bezoxazol-2yl) thiophene (BBOT).

Cruise Report - APR96FER

F. Optical Data Processing

The PRR data was processed using the Bermuda Bio-Optics Project (BBOP) processing software (Siegel et al., 1995). A least common denominator (LCD) file was created from the binary data files, the cast card files, the calibration files, and cruise notes. The LCD file header contains the metadata for the cast and includes information on the parameters sampled, parameters derived, filters used, and the statistical results of the regression used to extrapolate light to the sub-surface. An example header is presented in Appendix C. The pressure channel data was recalculated using an offset to adjust for the distance of the pressure sensor from the cosine collector. The tops and bottoms of the individual profiles were marked using an interactive Matlab[®] script and the corresponding record numbers were inserted into the LCD header section. Data less than the dark threshold was replaced by -9.9x10³⁵. Then the data was quality controlled using flags for data with tilt and roll angles greater than 10° (flag value greater than 0 in the "aq-1Tilt-1Roll" field), and records where the surface incident irradiance was not uniform (flag value greater than 0 in the "kq-led412" field). The temperature, transmissometer, and fluorometer data were despiked, in two passes, with a difference threshold. A moving average was calculated for these channels. The data were separated into upcast and downcast profiles and then binned to 0.5-m bins. Spectral attenuation coefficients were calculated for the optical channels over a five-point moving window. Sub-surface downwelling irradiance and upwelling radiance were extrapolated to just below the surface using data from the top 3 meters. The statistics for calculation of sub-surface irradiance and radiance are shown in Appendix B.

G. Along-Track Measurements

The along-track measurement system used the ship's sea water intake system and pump with the output redirected into a 5-gallon bucket located in the wet lab sink. A Hydrolab Datasonde 3 Multiprobe logger (Serial No. 25435) and a WETLabs SAFire (Serial No. SAF106) were placed in the bucket and the water overflow was directed down the sink. A SeaBird pump (Serial No. 051466) running at 3,000 RPM pushed water from the bucket through the SAFire flow tube. The Datasonde recorded temperature, salinity, pH, and turbidity (in normalized turbidity units [NTU]) every five minutes. The SAFire recorded fluorescence with six excitation wavelengths (228, 265, 313, 375, 430, 490 nm) and 16 emission wavelengths (228, 265, 313, 340, 365, 400, 430, 460, 490, 510, 540, 590, 620, 650, 690, 810 nm) every two minutes. The SAFire was used on April 24 and 25. The ship's Differential Global Positioning System (DGPS) was used to log the date, time, position (latitude, longitude), and the course and speed of the vessel. This data was binned to five minute intervals. The time stamps in the DGPS files were used to match the times in the Datasonde and SAFire records to create along-track records containing all the measured parameters. All DGPS records for April 25 were lost due to a computer crash prior to file closure.

IV. Results

The measurements shown here were from a variety of waters types, ranging from the extremely turbid inshore waters of Sapelo Sound (station 2.1) to the clear mdi-shelf waters (station 4.3).

A. Bottle Samples

The surface chlorophyll concentration measured at the various stations are shown in Table 4 and the surface phytoplankton pigment concentration in Table 5. There are large differences in the chlorophyll *a* values obtained by HPLC technique, both between duplicates from the same station, and when compared to chlorophyll *a* concentrations obtained fluorometrically. These discrepancies are under investigation. Particulate absorption measurements are shown in Figures 4, 5, 6, and 7. The dissolved organic matter absorption measurements are shown in Figures 8, 9, 10, and 11. The coastal stations (1.1, 1.2, 1.3, 2.1, 2.2, 2.3, and 3.1) can be clearly delineated from the off-shore stations (2.4, 2.5, 2.6, 2.7, 3.2, 3.3, 4.1, 4.2, and 4.3).

Date	Station	Volume	Sample A	Sample B	Sample C	Average
		Filtered (mL)				(mg/L)
4/22/96	1.1	150	3.033	3.313	3.033	3.126
4/22/96	1.2	150	3.967	3.967	3.920	3.951
4/22/96	1.3	150	3.967	3.453	3.733	3.718
4/23/96	2.1	100	22.820	17.360	17.290	19.157
4/23/96	2.2	200	4.165	4.970	4.445	4.527
4/23/96	2.3	150	3.127	3.080	3.267	3.158
4/23/96	2.4	200	1.225	0.770	0.735	0.910
4/23/96	2.5	250	0.560	0.560	0.532	0.551
4/23/96	2.6	250	0.700	0.616	0.532	0.616
4/23/96	2.7	250	0.532	0.476	0.504	0.504
4/24/96	3.1	150	3.593	3.407	3.407	3.469
4/24/96	3.2	250	1.372	1.316	1.400	1.363
4/24/96	3.3	250	1.092	1.092	1.064	1.083
4/25/96	4.3	250	0.672	0.532	0.616	0.607

Table 4. S	urface Ch	lorophyll	Concentration
------------	-----------	-----------	---------------

																Sec.											
Ph-tin			0.005	0.005	0.005	0.018	0.010	0.104	0.011	0.008	0.010	0.014	0.003	0	0	0.003	0.003	0	0.003	0.007	0.013	0	0.004	0	0	0	
Ph-ide	x3		0.015	0.015	0.016	0.020	0.043	0.218	0.035	0.038	0.022	0.017	0	0	0	0	0	0	0	0.038	0.033	0.003	0.007	0	0	0	
Ph-ide	x2		0.003	0.001	0.003	0	0	0.007	0	0.001	0.007	0	0	0	0.003	0	0	0	0	0	0.004	0	0	0	0	0.001	
Ph-ide	x1		0.037	0.143	0.026	0.033	0.028	0.200	0.043	0.045	0.093	0.026	0.005	0.007	0.084	0.005	0.007	0.007	0.004	0.169	0.037	0.013	0.010	0.009	0.011	0.009	
Chl-ide			0.295	0.195	0.193	0.124	0.068	0.785	0.100	0.256	0.156	0.054	0.015	0.025	0.019	0.011	0.032	0.039	0.019	0.116	0.196	0.081	0.027	0.051	0.033	0.015	
Chl a			0.652	0.399	0.096	0.344	0.364	0.748	0.368	0.140	0.082	0.307	0.052	0.080	0.038	0.034	0.044	0.037	0.048	0.301	0.057	0.037	0.129	0.027	0.020	0.030	
Chl b			0.095	0.057	0.022	0.026	0.066	0	0.086	0	0	0.033	0	0	0	0	0	0	0	0.030	0	0	0	0	0	0	
Lutein			0.008	0	0.005	0	0.010	0.032	0.011	0	0.005	0.012	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Zeax			0.105	0.066	0.050	0.174	0.149	0.083	0.176	0.080	0.110	0.189	0.041	0.046	0.023	0.038	0.035	0.018	0.033	0.104	0.058	0.034	0.053	0.034	0.030	0.034	
Diadin			0.044	0.034	0.023	0.042	0.044	0.093	0.04	0.026	0.024	0.024	0.006	0.006	0.004	0.006	0.007	0.005	0.005	0.028	0.021	0.011	0.011	0.009	0.009	0.005	
19'-	Hex		0.110	0.088	090.0	C0.097	0.082	0.053	0.059	0.057	0.050	0.041	0.016	0.02	0.011	0.020	0.021	0.016	0.017	0.040	0.041	0.021	0.020	0.018	0.007	0.009	
Fucox			0.453	0.320	0.308	0.388	0.357	1.850	0.414	0.342	0.017	0.228	060.0	0.070	0.044	0.051	0.060	0.057	0.056	0.498	0.510	0.157	0.145	0.123	0.099	0.050	
19'-But			0.062	0.046	0.027	0.028	0.036	0	0.022	0.018	0.017	0.014	0.005	0.005	0.003	0.004	0.006	0.004	0.005	0.012	0.016	0.009	0.007	0.006	0.005	0.003	
Perid			0.015	0.010	0.013	0.013	0.016	0.080	0.019	0.016	0.007	0.007	0.004	0.004	0.001	0.002	0.002	0.001	0.003	0.012	0.013	0.006	0.008	0.007	0.003	0	
Chl	c1+2		0.309	0.229	0.200	0.244	0.234	1.178	0.276	0.225	0.173	0.151	0.054	0.059	0.027	0.036	0.035	0.034	0.037	0.251	0.266	0.106	0.086	0.080	0.067	0.029	
Chl c3			0.161	0.123	0.091	0.127	0.128	0.080	0.113	0.081	0.067	0.064	0.026	0.023	0.013	0.020	0.020	0.019	0.018	0.099	0.104	0.043	0.04	0.039	0.029	0.012	
Volume	Filtered	(1)	2.325	2.37	2.325	1.500	1.500	006.0	2.325	2.325	2.325	2.325	2.825	2.870	4.595	4.596	4.612	4.608	4.612	2.325	2.325	2.325	2.325	2.370	2.325	4.612	
Station			1.1b	1.1c	1.2b	1.3a	1.3b	2.1c	2.2a	2.2b	2.3a	2.3b	2.4b	2.4c	2.5b	2.6b	2.6c	2.7a	2.7b	3.1a	3.1b	3.2a	3.2b	3.3c	4.1b	4.3c	

Table 5. Surface Phytoplankton Pigment Concentration

.

B. Optical Data

The profiles of light, temperature, scattering, fluorescence, and beam transmission are shown in Figures A1-A32 (Appendix A). Many of the optical casts (stations 2.1, 2.2 downcast, 2.4 upcast, 2.5 upcast, 2.6 downcast, 2.7, 3.1 downcast, and 3.2 upcast) appear to be compromised by ship shadow, presumably because the "A-frame" used to lower the PRR cage extended only 1-meter off the side of the ship. Due to rough weather, the PRR cage was often rapidly lowered to a depth of about 2 meters, to prevent the cage from banging against the side of the ship. This action reduced the data density near surface; therefore, some of the estimates of the sub-surface light field are not valid (stations 1.1 downcast, 2.3 upcast, 2.4 downcast, 2.5 downcast, 2.6 downcast, 3.1 downcast, 3.2 downcast, 3.3, 4.1 downcast, 4.2, and 4.3). Also highly attenuating waters of the inshore stations did not allow a valid calculation of the sub-surface light field (e.g. station 2.1). Upwelling radiance profiles from the mid-shelf stations (3.2, 4.2, and 4.3) show evidence of bottom reflection. The statistics for the calculation of the sub-surface light field are given in Appendix B.

V. Summary

This study further demonstrates the existence of a coastal front that separates the turbid inshore waters from the clearer mid-shelf waters discussed by Nelson and Guarda (1995). The particulate and dissolved organic matter absorption spectra can be used to delineate between the inshore stations and the mid-shelf ones. This coastal front runs very close to the boundaries of the GRNMS – stations 2.5, 3.3, 4.1, and 4.2 are within the GRNMS boundaries – and it is possible that at certain times of the year with high river out flow, terrestrially influenced waters will affect the visibility and water quality in the GRNMS.

VI. References

Cleveland, J. S. and A. D. Weidemann (1993). "Quantifying absorption by aquatic particles: A multiple scattering correcting for glass fiber filters." *Limnology and Oceanography* **38**(6): 1321-1327.

Mitchell, B. G. (1990). "Algorithms for determining the absorption coefficient of aquatic particulates using the Quantitative Filter Technique (QFT)." *Ocean Optics X*, Orlando, FL, SPIE.

Mueller, J. L. and R. W. Austin (1995). Ocean Optics Protocols for SeaWiFS Validation, Revison 1. *SeaWiFS Technical Report Series*, **Vol. 25**. Eds: Hooker, S.B. and Firestone, E. R. 66 pp.

Nelson, J. R. and S. Guarda (1995). "Particulate and dissolved spectral absorption on the continental shelf of the southeastern United States." *Journal of Geophysical Research* **100**(C5): 8715-8732.

Siegel, D. A., M. C. O'Brien, J. C. Sorensen, D. A. Konnoff and E. Fields (1995). "BBOP Data Processing and Sampling Procedures." **Vol: 19**, Institute for Computational Earth System Science, UC Santa Barbara, Santa Barbara, CA, 23 pp.

Welschmeyer, N. (1994). "Fluorometric analysis of chlorophylla in the presence of chlorophyll b and pheopigments." *Limnology and Oceanography* **39**(8): 1985-1992.

Wright, S. W., S. W. Jeffrey, R. F. C. Mantoura, C. A. Llewellyn, T. Bjornland, D. Repeta and N. A. Welschmeyer (1991). "Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton." *Marine Ecology Progress Series* 77: 183-196.

VII. Metadata

The metadata, including points of contact, parameters measured, and measurement methods for the cruise are given below.

A. Core Documentation

Identification_Information

Citation

Citation_Information

Originator: National Oceanic and Atmospheric Administration Coastal Services Center

Publication_Date: 1997

Title: NOAA CSC/CRS Cruise APR96FER: Gray's Reef Cruise Online Linkage: http://www.csc.noaa.gov/crs/cruises/apr96fer/index.html

Description

Abstract: The Gray's Reef National Marine Sanctuary (GRNMS) is one of the most popular recreational fishing and diving areas off the Georgia Coast. Thus primary production - the production rate of phytoplankton, the bottom of the food chain and the water quality of this region are of great interest to sanctuary managers. These parameters impact fish populations and recreational diving. Ocean color satellites provide daily synoptic data of the region and could be a useful tool to sanctuary managers. However, for this tool to be truly useful, algorithms that relate satellite data to chlorophyll biomass, primary production, and water column visibility need to be developed and validated.

Measurements of surface chlorophyll pigment biomass, particulate absorption, dissolved organic material absorption, and spectral fluorescence were made during a cruise from April 22 to 25, 1996 in the vicinity of Gray's Reef National Marine Sanctuary. Water column profiles of temperature, conductivity, salinity, chlorophyll fluorescence, scattering, beam transmittance, upwelling radiance and downwelling irradiance were made at 16 stations.

Purpose: The objective of this cruise was to determine the optical properties and variability within GRNMS and the surrounding area.

Supplemental_Information: StartDate: 19962204 StopDate: 19962504 Preview: http://www.csc.noaa.gov/crs/cruises/index.html Time_Period_of_Content Time_Period_Information Single_Date/Time Calendar_Date: 1996 Currentness_Reference: Publication Date

Status

Progress: Complete Maintenance_and_Update_Frequency: Unknown

Spatial Domain

Bounding Coordinates:

West Bounding Coordinate: -81.24 East Bounding Coordinate: -80.45 North Bounding Coordinate: 31.97 South Bounding Coordinate: 31.33

Keywords

Theme

Theme_Keyword_Thesaurus: None

Theme_Keyword: oceanography

Theme_Keyword: bio-optical

Theme_Keyword: turbidity

Theme_Keyword: water clarity

Theme_Keyword: blooms

Theme_Keyword: resuspension

Theme_Keyword: spatial variability

Theme_Keyword: river plumes

Theme_Keyword: coastal water optics

Theme_Keyword: case II algorithms

Theme_Keyword: absorption

Theme_Keyword: attenuation

Theme_Keyword: AVHRR

Theme_Keyword: reflectance difference

Theme_Keyword: in-situ optical profiling

Theme_Keyword: ocean color satellites

Theme_Keyword: coastal ocean algorithm development

Place

Place_Keyword_Thesaurus: None

Place_Keyword: Gray's Reef National Marine Sanctuary

Place_Keyword: Sapelo Sound

Place_Keyword: Georgia Bight

Place Keyword: South Atlantic Bight Place Keyword: Georgia Place_Keyword: United States Time Temporal Keyword: Spring freshet Temporal_Keyword: April, 1996 Parameters Measured Parameter_Keyword: spectral downwelling irradiance Parameter_Keyword: spectral upwelling radiance Parameter_Keyword: temperature Parameter_Keyword: chlorophyll concentration Parameter_Keyword: phytoplankton pigment concentration Parameter Keyword: particulate absorption Parameter_Keyword: dissolved organic matter absorption Parameter_Keyword: salinity Parameter Keyword: spectral fluorescence Parameter_Keyword: particulate organic nitrogen concentration Parameter_Keyword: particulate organic carbon concentration Parameter_Keyword: beam attenuation at 660 nm Parameter_Keyword: in-situ fluorescence Parameter Keyword: scalar quantum irradiance Parameter_Keyword: light scattering

Point_of_Contact:

Contact Information: Contact_Organization_Primary: Contact Organization: NOAA Coastal Services Center Contact_Person: Dr. A. Subramaniam **Contact Address:** Address_Type: mailing and physical 2234 Hobson Avenue Address: City: Charleston South Carolina State: Postal Code: 29405-2413 Country: USA Contact_Voice_Telephone: (800)789-2234 Contact_Electronic_Mail_Address: crs@csc.noaa.gov Hours of Service: 8AM-5PM, M-F

B. Citation Information

Source Citation: Subramaniam, A., K.J. Waters, A.W. Meredith, E.M. Armstrong, R.M. Bohne, W.G. Keull, J.R. Nelson, G.R. DiTullio, and J.C. Brock. 1997. NOAA CSC/CRS Cruise APR96FER: Gray's Reef Cruise. CSC Technical Report CSC/7-97/001. NOAA Coastal Services Center. Charleston, SC. Pp38.

Currentness: July 1997

Access Constraints: None

Use Constraints: This data was acquired for scientific research and is applicable for algorithm validation purposes. Knowledge of in-water optics is expected of users for interpretation of the data. Users of this data are required to provide appropriate attribution in the form of co-authorship for any publications that use this data, unless formal permission to do otherwise is granted by NOAA/CSC.

C. Data Quality

Process Description: See Methods, page 1

Spectroradiom	eter measurements: Spectral downwelling irradiance (in-situ	ı
	and above surface), spectral upwelling radiance,	
	temperature	
Instruments:	PRR600s, PRR610	
Manufacturer:	Biospherical Instruments, Inc.	
Address:	5340 Riley Street	
	San Diego, CA 92110-2621	
Phone:	(619) 686.1888	
Beam attenuat	ion: C660	

Instrument: SeaTech transmissometer Manufacturer: Sea Tech, Inc. Address: 825 NE Circle Blvd. Corvallis, OR 97330 Phone: (206) 757-9716

Fluorescence: FluorometerInstrument:WetStar fluorometerManufacturer:WET Labs, IncAddress:620 Applegate StreetPhilomath, OR 97370Phone:(541) 929-5650

Light scattering Instrument: SeaTech LSS Manufacturer: Sea Tech, Inc. Address: 825 NE Circle Blvd. Corvallis, OR 97330 Phone: (206) 757-9716 Quantum scalar irradiance.Instrument:QSP200Manufacturer:Biospherical Instruments, Inc.Address:5340 Riley StreetSan Diego, CA 92110-2621Phone:(619) 686.1888

Spectral fluorescence Instrument: WetLabs SAFire Manufacturer: WET Labs, Inc Address: 620 Applegate Street Philomath, OR 97370 Phone: (541) 929-5650

GPS position and time Instrument: Unknown Manufacturer: Unknown

Surface temperature, salinity. Instrument: Hydrolabs Datasonde-3 Manufacterer: Hydrolab Corporation P.O. Box 50116 Austin, TX 78763 Phone: 1-800-949-3766

Operator: Kirk Waters Address: see point of contact

Chlorophyll measurements:

Methods reference: Welschmeyer, N. (1994). "Fluorometric analysis of chlorophyll *a* in the presence of chlorophyll *b* and pheopigments." *Limnology and Oceanography* **39**(8): 1985-1992.

Phytoplankton pigment measurements:

Methods reference: Wright, S. W., S. W. Jeffrey, R. F. C. Mantoura, C. A. Llewellyn, T. Bjornland, D. Repeta and N. A. Welschmeyer (1991). "Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton." *Marine Ecology Progress Series* 77: 183-196.

Analyst:	Mark Geesey
Address:	Grice Marine Biological Laboratory
	205 Fort Johnson Road
	Charleston, SC 29412
Telephone:	(803) 406-4000.

Absorption measurements:

Methods reference: Nelson, J. R. and S. Guarda (1995). "Particulate and dissolved spectral absorption on the continental shelf of the southeastern United States." Journal of Geophysical Research 100(C5): 8715-8732.

Analysts: Address:

Jim Nelson Skidaway Institute of Oceanography 10 Ocean Science Circle Savannah, GA 31411 Telephone: (912) 598-2687.

Attribute Accuracy: See Appendix D

Horizontal Positional Accuracy: 10 m

Entity and Attribute Overview Description: See Methods, page 1

D. **Metadata Reference Information**

Metadata Date: 25 July, 1997

Contact Organization: NOAA/Coastal Services Center

Contact Person: Lauren Parker

Full Address: see point of contact

Metadata Standard Name: Content Standards for Digital Geospatial Metadata Workbook.

Metadata Standard Version: Version 1.0

The core documentation section is designed for the purposes of the Coastal Information Directory (CID). The metadata in this section is used in building the CID's database.

VIII. Appendix A - Water Column Profile Data Figures

The following pages contain figures that show the *in-situ* water column profile data.

Figure A.1a - Station 1.1 Downcast

.

Figure A.2a - Station 1.1 Upcast

.

۲

•

Figure A.5a - Station 1.3 Downcast

•

ked380 ked412 ked443

ked490

ked510 ked555

Figure A. 8b - Station 2.1 Upcast

.

ked380 ked412 ked443 ked490

ked510 ked555

Figure A.9a - Station 2.2 Downcast

▲ ked510

0

ked380

ked412

ked443 ked490

ked555

Diffuse Attenuation Coefficient

1.50

1.75

2.00

2.25

2.50

1.25

0.25

0.50

0.75

1.00

Figure A.10a - Station 2.2 Upcast

Figure A.10b - Station 2.2 Upcast

٠

Figure A.11a - Station 2.3 Downcast

Diffuse Attenuation Coefficient

.

ked380 ked412

ked443 ked490

ked510 ked555

Figure A.12a - Station 2.3 Upcast

ked380

ked412 ked443

ked490

ked510 ked555

Figure A.12b - Station 2.3 Upcast

Figure A.13a - Station 2.4 Downcast

Diffuse Attenuation Coefficient

ked380

ked412

ked443

ked490

ked510

ked555

Figure A.14a - Station 2.4 Upcast

Figure A.14b - Station 2.4 Upcast

Diffuse Attenuation Coefficient

1.25

1.50

1.75

2.00

2.25

2.50

1.00

0.75

0.00

0.25

0.50

ked380 ked412

ked443

ked490

ked510

ked555

 \sim

Figure A.15a - Station 2.5 Downcast

•

Figure A.15b - Station 2.5 Downcast

Diffuse Attenuation Coefficient

ked380 ked412

ked443

ked490

ked510 ked555

Figure A.16a - Station 2.5 Upcast

Diffuse Attenuation Coefficient ($k\lambda$)

Figure A.17a - Station 2.6 Downcast

.

ked380 ked412

ked443

ked490 ked510

ked555

Figure A.18a - Station 2.6 Upcast

1.00

1.25

Diffuse Attenuation Coefficient

1.50

1.75

2.00

2.25

2.50

18 20

0.00

0.25

0.50

0.75

Figure A.18b - Station 2.6 Upcast

ked380 ked412

ked443

ked490

ked510 ked555

1.00

1.25

Diffuse Attenuation Coefficient

1.50

1.75

2.00

2.25

2.50

0.75

22 24

0.00

0.25

0.50

Figure A.19b - Station 2.7 Downcast

ked380

ked412 ked443

ked490

ked510

ked555

Diffuse Attenuation Coefficient

•

ked380 ked412

ked443

ked490

ked510

ked555

Figure A.21a - Station 3.1 Downcast

ked380 ked412

ked443 ked490

ked510 ked555

Diffuse Attenuation Coefficient

1.25

1.50

1.75

2.00

2.25

2.50

0.75

0.50

1.00

12 0.00

0.25

Figure A.24a - Station 3.2 Upcast

Diffuse Attenuation Coefficient

ked380 ked412

ked443

ked490 ked510

ked555

Figure A.25a - Station 3.3 Downcast

Figure A.25b - Station 3.3 Downcast

Diffuse Attenuation Coefficient

ked380 ked412

ked443

ked490 ked510

ked555

Figure A.26a - Station 3.3 Upcast

ked380 ked412

ked443

ked490 ked510

ked555

•

Figure A.27a - Station 4.1 Downcast

Figure A.27b - Station 4.1 Downcast

Diffuse Attenuation Coefficient

ked380 ked412

ked443

ked490 ked510

ked555

.

Figure A.29b - Station 4.2 Downcast

Diffuse Attenuation Coefficient ($k\lambda$)

Figure A.30a - Station 4.2 Upcast

-

Figure A.31a - Station 4.3 Downcast

Diffuse Attenuation Coefficient

ked380

ked412

ked443

ked490

ked510

ked555

.

Figure A.32a - Station 4.3 Upcast

Diffuse Attenuation Coefficient

ked380

ked412

ked443

ked490

ked510

ked555

Figure A. 33 Station 3.3 CTD April 24, 1996

Figure A. 34 Station 4.1 CTD April 25, 1996 •

Figure A. 35 Station 4.2 CTD April 25, 1996

1

٠,

Figure A. 36 Station 4.3 CTD April 25, 1996

IX. Appendix B - Sub-Surface Light Field Estimation Statistics

The following pages contain tables containing the statistics for calculation of the subsurface light field. The column channel refers to the optical channel; min and max depths are the minimum and maximum depths used in the calculation; n points are the number of points used in the calculation; b0 is the intercept of the regression – the estimated subsurface light (irradiance and radiance); b1 is the slope of the regression – the estimated attenuation coefficient, min, max, and mean refer to the minimum, maximum and mean irradiance or radiance values used in the calculation; and std dev, var, uncertainty, and abdev refer to the estimates of the intercept.

channel	min	max	n	b0	b1	min	max	mean	std dev	var	uncertainty	abdev
	depth	depth	points									
1.1 Upcast												
ed380	0.5	3	6	48.8334	0.28	0.78	23.74	4.19	3.43	4.56	1.19	0.04
ed412	0.5	3	6	89.2998	0.45	6.87	56.56	19.38	2.12	1.76	1.15	0.03
ed443	0.5	3	6	104.2881	0.59	18.53	76.75	37.54	1.66	1.29	1.13	0.03
ed490	0.5	3	6	110.4799	0.74	39.55	92.99	60.92	1.36	1.10	1.11	0.02
ed510	0.5	3	6	109.9582	0.78	46.42	94.98	66.90	1.30	1.07	1.08	0.02
ed555	0.5	3	6	114.1327	0.80	55.26	100.48	74.92	1.25	1.05	1.10	0.02
lu380	0.5	3	2	0.0954	0.24	0.02	0.04	0.03	2.01	1.63	inf	0.00
lu412	0.5	3	6	0.2560	0.44	0.02	0.16	0.05	2.21	1.87	1.16	0.04
lu443	0.5	3	6	0.4579	0.55	0.07	0.33	0.15	1.76	1.38	1.11	0.03
lu490	0.5	3	6	0.8647	0.69	0.26	0.70	0.42	1.43	1.13	1.07	0.02
lu510	0.5	3	6	0.9943	0.72	0.35	0.83	0.54	1.36	1.10	1.06	0.01
lu555	0.5	3	6	1.1122	0.78	0.49	0.96	0.69	1.27	1.06	1.04	0.01
lu683	0.5	3	6	0.2202	0.58	0.04	0.16	0.08	1.69	1.32	1.09	0.02
1.2 Downcast												
ed380	0.5	3	6	29.4509	0.14	0.05	5.03	0.58	6.16	27.26	1.43	0.07
ed412	0.5	3	6	58.7055	0.28	0.89	18.67	4.51	3.35	4.31	1.17	0.03
ed443	0.5	3	6	80.4318	0.39	3.91	34.76	12.33	2.37	2.10	1.11	0.02
ed490	0.5	3	6	97.6456	0.53	12.46	55.63	26.96	1.79	1.40	1.08	0.02
ed510	0.5	3	6	96.6105	0.58	16.33	65.42	32.50	1.70	1.32	1.15	0.03
ed555	0.5	3	6	95.4274	0.65	23.34	72.22	40.56	1.53	1.20	1.16	0.03
lu380	0.5	3										
lu412	0.5	3	3	0.1857	0.25	0.02	0.05	0.03	1.74	1.36	2.33	0.04
lu443	0.5	3	6	0.3557	0.37	0.01	0.15	0.05	2.52	2.35	1.13	0.03
lu490	0.5	3	6	0.7421	0.54	0.10	0.43	0.21	1.81	1.42	1.10	0.02
lu510	0.5	3	6	0.9365	0.57	0.15	0.57	0.31	1.69	1.32	1.08	0.02
lu555	0.5	3	6	1.1864	0.64	0.28	0.80	0.49	1.52	1.19	1.06	0.01
lu683	0.5	3	6	0.3466	0.42	0.02	0.16	0.06	2.18	1.83	1.09	0.02

channel	min	max	n	b0	b1	min	max	mean	std dev	var	uncertainty	abdev
	depth	depth	points									
1.2 Upcast												
ed380	0.5	3	6	22.5054	0.14	0.05	11.77	0.49	7.76	66.47	1.66	0.13
ed412	0.5	3	6	47.5527	0.27	0.82	30.99	3.98	3.80	5.92	1.33	0.06
ed443	0.5	3	6	61.0742	0.41	3.75	48.03	11.28	2.54	2.38	1.29	0.04
ed490	0.5	3	6	77.2208	0.56	12.33	65.33	25.32	1.83	1.44	1.17	0.03
ed510	0.5	3	6	77.4834	0.61	16.46	69.72	30.60	1.69	1.31	1.18	0.03
ed555	0.5	3	6	78.7794	0.68	23.68	73.55	38.52	1.50	1.18	1.16	0.02
lu380	0.5	3										
lu412	0.5	3	2	0.2725	0.17	0.03	0.11	0.06	2.39	2.14	inf	0.00
lu443	0.5	3	6	0.3796	0.34	0.01	0.25	0.05	2.94	3.19	1.33	0.08
lu490	0.5	3	6	0.9072	0.47	0.09	0.62	0.21	2.06	1.69	1.22	0.05
lu510	0.5	3	6	1.1155	0.51	0.15	0.79	0.30	1.91	1.52	1.19	0.04
lu555	0.5	3	6	1.4130	0.57	0.26	1.07	0.49	1.71	1.34	1.15	0.04
lu683	0.5	3	6	0.3911	0.39	0.02	0.26	0.06	2.50	2.32	1.26	0.06
1.3 Downcast												
ed380	0.5	3	5	3.4900	0.23	0.03	0.45	0.12	2.99	3.32	1.18	0.02
ed412	0.5	3	5	9.8880	0.35	0.37	2.30	0.89	2.15	1.79	1.27	0.03
ed443	0.5	3	5	13.9971	0.46	1.36	4.97	2.50	1.73	1.35	1.31	0.03
ed490	0.5	3	5	18.5978	0.58	3.74	9.10	5.57	1.46	1.15	1.34	0.03
ed510	0.5	3	5	19.5960	0.61	4.64	10.33	6.61	1.41	1.12	1.35	0.03
ed555	0.5	3	5	20.6226	0.66	6.09	11.97	8.14	1.34	1.09	1.36	0.03
lu380	0.5	3										
lu412	0.5	3										
lu443	0.5	3	5	0.0469	0.45	0.00	0.02	0.01	1.75	1.37	1.35	0.03
lu490	0.5	3	5	0.1118	0.59	0.02	0.05	0.03	1.46	1.15	1.28	0.03
lu510	0.5	3	5	0.1373	0.62	0.03	0.07	0.05	1.39	1.12	1.29	0.03
lu555	0.5	3	5	0.1722	0.68	0.05	0.10	0.07	1.31	1.08	1.27	0.02
lu683	0.5	3	5	0.0391	0.45	0.00	0.01	0.01	1.73	1.35	1.53	0.04
1.3 Upcast												
ed380	0.5	3	6	2.8067	0.23	0.02	1.14	0.16	4.16	7.61	1.19	0.05
ed412	0.5	3	6	8.5263	0.36	0.28	4.32	1.14	2.70	2.69	1.09	0.02
ed443	0.5	3	6	12.7750	0.48	1.15	7.99	3.07	2.03	1.65	1.05	0.01
ed490	0.5	3	6	17.8744	0.60	3.40	12.84	6.64	1.63	1.27	1.03	0.01
ed510	0.5	3	6	19.2474	0.63	4.32	14.28	7.88	1.55	1.21	1.03	0.01
ed555	0.5	3	6	20.6797	0.68	5.76	15.98	9.62	1.46	1.15	1.03	0.01
lu380	0.5	3										
lu412	0.5	3										
lu443	0.5	3	6	0.0455	0.46	0.00	0.03	0.01	2.15	1.80	1.09	0.02
lu490	0.5	3	6	0.1191	0.58	0.02	0.08	0.04	1.69	1.32	1.06	0.01
lu510	0.5	3	6	0.1480	0.61	0.03	0.11	0.06	1.60	1.25	1.05	0.01
lu555	0.5	3	6	0.1925	0.66	0.05	0.15	0.09	1.48	1.16	1.06	0.01
lu683	0.5	3	6	0.0439	0.44	0.00	0.03	0.01	2.20	1.86	1.15	0.04

channel	min	max	n	b0	b1	min	max	mean	std dev	var	uncertainty	abdev
2211	depth	depth	points									
2.2 Upcast	0.5	2	5	20.8160	0.15	0.05	2 12	0.30	4 58	10.16	1 55	0.05
ed380	0.5	2	5	40.5020	0.15	0.05	10.80	2 02	2 70	2.86	1.16	0.02
ed412	0.5	2	5	49.3930	0.20	2.75	10.09	0.10	2.19	1.65	1.10	0.02
ed443	0.5	2	5	01.0521	0.42	3.75	10.46	2.19	1.58	1.05	1.20	0.02
ed490	0.5	2	5	01.2349	0.50	16.21	40.40	22.25	1.30	1.25	1.17	0.02
ed510	0.5	3	5	83.0340	0.01	10.21	43.30	21.17	1.49	1.17	1.14	0.02
ed555	0.5	3	2	83.9235	0.08	23.03	52.12	54.75	1.57	1.10	1.15	0.02
lu380	0.5	3										
lu412	0.5	3				0.01	0.00	0.02	2.00	1.71	1.20	0.02
lu443	0.5	3	5	0.2220	0.41	0.01	0.08	0.03	2.08	1./1	1.20	0.03
lu490	0.5	3	5	0.4406	0.64	0.10	0.25	0.16	1.46	1.16	1.22	0.03
lu510	0.5	3	5	0.5375	0.69	0.16	0.35	0.24	1.36	1.10	1.23	0.03
lu555	0.5	3	5	0.7234	0.79	0.33	0.53	0.44	1.22	1.04	1.22	0.03
lu683	0.5	3	5	0.1728	0.52	0.02	0.08	0.04	1.72	1.34	1.15	0.02
2.3 Downcast												
ed380	0.5	3	6	34.7401	0.12	0.03	5.33	0.47	6.78	39.09	1.32	0.05
ed412	0.5	3	6	74.7048	0.26	0.82	22.62	4.80	3.47	4.70	1.19	0.04
ed443	0.5	3	6	95.5184	0.40	4.64	42.90	15.19	2.31	2.02	1.14	0.03
ed490	0.5	3	6	108.7289	0.58	17.30	67.50	36.29	1.67	1.30	1.12	0.03
ed510	0.5	3	6	103.1470	0.65	23.27	70.71	43.29	1.53	1.20	1.15	0.03
ed555	0.5	3	6	105.1371	0.73	34.80	79.38	55.70	1.37	1.11	1.14	0.03
lu380	0.5	3										
lu412	0.5	3	2	0.1371	0.23	0.02	0.04	0.03	1.49	1.17	inf	0.00
lu443	0.5	3	6	0.2914	0.35	0.01	0.12	0.03	2.60	2.48	1.07	0.01
lu490	0.5	3	6	0.6347	0.51	0.07	0.36	0.16	1.84	1.45	1.04	0.01
lu510	0.5	3	6	0.7805	0.55	0.11	0.47	0.23	1.73	1.35	1.03	0.01
lu555	0.5	3	6	1.0226	0.60	0.20	0.66	0.37	1.58	1.23	1.03	0.01
lu683	0.5	3	6	0.3221	0.42	0.02	0.15	0.06	2.18	1.83	1.09	0.02
2.6 Upcast												
ed380	0.5	3	5	61.6049	0.53	7.11	26.41	14.19	1.64	1.28	1.37	0.04
ed412	0.5	3	5	115.1391	0.68	30.93	68.98	47.15	1.35	1.09	1.23	0.03
ed443	0.5	3	5	141.6880	0.77	56.31	99.72	75.79	1.23	1.05	1.20	0.03
ed490	0.5	3	5	156.3724	0.84	82.60	123.59	101.92	1.16	1.02	1.18	0.02
ed510	0.5	3	5	161.1089	0.83	86.85	126.45	105.73	1.16	1.02	1.22	0.03
ed555	0.5	3	5	153.5599	0.84	86.76	122.78	104.43	1.14	1.02	1.18	0.02
lu380	0.5	3	4	0.0786	0.52	0.02	0.03	0.02	1.42	1.13	2.33	0.06
lu412	0.5	3	5	0.1843	0.71	0.06	0.12	0.08	1.31	1.07	1.24	0.03
lu443	0.5	3	5	0.3344	0.80	0.16	0.25	0.20	1.19	1.03	1.19	0.03
1490	0.5	3	5	0.5960	0.89	0.40	0.51	0.45	1.10	1.01	1.11	0.02
lu510	0.5	3	5	0.6230	0.89	0.42	0.53	0.47	1.09	1.01	1.08	0.01
10555	0.5	3	5	0.5219	0.90	0.37	0.46	0.41	1.08	1.01	1.07	0.01
10683	0.5	3	5	0.0562	0.70	0.02	0.03	0.02	1.34	1.09	1.07	0.01

channel	min depth	max depth	n points	b0	b1	min	max	mean	std dev	var	uncertainty	abdev
3.1 Upcast												
ed380	0.5	3	6	37.5926	0.26	0.35	14.99	2.53	3.83	6.08	1.41	0.07
ed412	0.5	3	6	75.5791	0.42	3.75	39.64	13.22	2.36	2.08	1.27	0.05
ed443	0.5	3	6	100.6542	0.53	11.81	58.65	28.30	1.81	1.42	1.21	0.04
ed490	0.5	3	6	117.4772	0.66	29.06	78.55	50.65	1.46	1.15	1.18	0.04
ed510	0.5	3	. 6	116.7089	0.70	34.87	83.22	56.68	1.39	1.11	1.16	0.03
ed555	0.5	3	6	115.7359	0.74	42.57	85.93	63.51	1.31	1.08	1.15	0.03
lu380	0.5	3										
lu412	0.5	3	5	0.1902	0.41	0.02	0.10	0.04	1.98	1.60	1.28	0.05
lu443	0.5	3	6	0.3616	0.53	0.05	0.24	0.10	1.82	1.43	1.11	0.03
lu490	0.5	3	6	0.7829	0.68	0.22	0.62	0.36	1.46	1.15	1.09	0.02
lu510	0.5	3	6	0.9574	0.70	0.31	0.76	0.47	1.39	1.12	1.09	0.02
lu555	0.5	3	6	1.1707	0.75	0.48	0.96	0.66	1.30	1.07	1.09	0.02
lu683	0.5	3	6	0.2128	0.55	0.03	0.15	0.07	1.75	1.37	1.14	0.03

X. Appendix C - Example Profile Header Information

The following text is an example of the header information found in each BBOP processed profile file. <cruise info> filename p960422a date 04-22-1996 day_of_year 113 day_since_010192 1574 file created 15:56:31 cruise 1.1 position 80 43.3 31 57.9 longitude 80 43.3 latitude 31 57.9 sky_state clear operator_name kjw sun_position 3 cruise_id ferrel april 96 cruise session_started 15:56:42 depth_offset .29 transmiss_offset 0.002 trans_air_calib 5.1 trans_factory_air_calib 4.711 trans sn 664 most recent dark_file deck comparison_file cal_date_uw9643 032696 cal_date_sfc9644 032696 downcast_ended 16:00:15.19 339 upcast_ended 16:01:07.601 418 collection_software_version prrprof_002086c number units 1 collection cal_file 96439644.cfl;prr-600 #9643/9644 calibration file 3/26/96 cac lcd calib file 0/csc/nep1/coors/bbops/BUILD/calib/unit0_032696.cfl 1 /csc/nep1/coors/bbops/BUILD/calib/unit1_032696.cfl 2 /csc/nep1/coors/bbops/BUILD/calib/unit2_032696.cfl lcdfile_created Dec 16 1996 17:05:44 castid index 1prr_record 1depth p960422a.dt1 1.3100000e+02 1.3100000e+02 1.6445010e+00 p960422a.db1 2.6300000e+02 2.6300000e+02 1.4967300e+01 p960422a.ub1 3.0700000e+02 3.0700000e+02 1.4992800e+01 p960422a.ut1 4.0500000e+02 4.0500000e+02 3.7331600e-01

<sampled_parameters> 1prr_record 110 1ed380 0 -0.008677 0.00016 1ed412 0 -0.021592 9.5e-05 1ed443 0 -0.022113 0.000116 1ed490 0 -0.02328 0.000272 1ed510 0 -0.022617 0.000108 1ed555 0 -0.02301 0.000459 1par 0 -9.05074 0.000337 ledgnd 0 1 0 1temp 0 0.141923 0.080084 1depth 0. 9.37400e-01 8.38842e+01 2.66735e+01 0.9374 83.8842 26.9635 0 0 1 xmiss 0. 5.55901e-02 -1.89174e-03 0.05 0 1qsp 0 -1.61e-17 0.0018 1tilt 0 0.04178 2.68617 1roll 0 0.041514 2.69727 1fluor 0 1 0 2lu380 0 -0.151959 0.000221 2lu412 0 -0.509911 -6.8e-05 2lu443 0 -0.911266 0.000233 2lu490 0 -1.00583 0.00018 2lu510 0 -1.24899 0.000363 2lu555 0 -1.75531 0.00018 2lu683 0 -1.55517 9.5e-05 2lugnd 0 1 0 3es380 0 -0.03292 0.000205 3es412 0 -0.0327 -0.000888 3es443 0 -0.0342 -3.6e-05 3es490 0 -0.03342 -0.000291 3es510 0 -0.03317 -0.00028 3es555 0 -0.03269 0.000142 3par 0 -10.8742 -4e-05 3edgnd 0 1 0 <derived_parameters> aq-1Tilt-1Roll kq-1ed412 d-1fluor d-1temp d-1xmiss d-d-1fluor d-d-1temp d-d-1xmiss m-d-d-1temp bin_0.5_1depth ptsbin_0.5

kc-1ed380 kc-1ed412 kc-1ed443 kc-1ed490 kc-1ed510 kc-1ed555 <data>

<filters_used>

prrrecalz -o 1depth 0.9374 83.8842 26.6735 /csc/nep1/coors/bbops/BUILD/apr96ferrel/lcd/p960422a.lcd outfile26473 bboprecal -r 1xmiss 0.0555901 -0.00189174 /csc/nep1/coors/bbops/BUILD/apr96ferrel/lcd/p960422a.lcd outfile27117 bbopradg -fa 1ed380 6.327000e-03 p960422a.lcd outqp960422a.lcd bbopradq -fa 1ed412 1.000000e-04 p960422a.lcd outqp960422a.lcd bbopradq -fa 1ed443 1.000000e-04 p960422a.lcd outqp960422a.lcd bbopradg -fa 1ed490 1.000000e-04 p960422a.lcd outqp960422a.lcd bbopradg -fa 1ed510 2.000000e-04 p960422a.lcd outqp960422a.lcd bbopradq -fa 1ed555 1.000000e-04 p960422a.lcd outqp960422a.lcd bbopradq -fa 3es380 1.000000e-04 p960422a.lcd outqp960422a.lcd bbopradg -fa 3es412 1.000000e-03 p960422a.lcd outqp960422a.lcd bbopradq -fa 3es443 1.000000e-03 p960422a.lcd outqp960422a.lcd bbopradg -fa 3es490 1.000000e-05 p960422a.lcd outqp960422a.lcd bbopradg -fa 3es510 1.000000e-05 p960422a.lcd outqp960422a.lcd bbopradg -fa 3es555 1.000000e-04 p960422a.lcd outqp960422a.lcd bbopradq -fa 3par 1.000000e-01 p960422a.lcd outqp960422a.lcd bbopradg -fa 2lu380 1.000000e-02 p960422a.lcd outqp960422a.lcd bbopradg -fa 2lu412 1.000000e-02 p960422a.lcd outqp960422a.lcd bbopradq -fa 2lu443 1.000000e-03 p960422a.lcd outqp960422a.lcd bbopradq -fa 21u490 1.000000e-03 p960422a.lcd outqp960422a.lcd bbopradg -fa 2lu510 1.000000e-03 p960422a.lcd outqp960422a.lcd bbopradq -fa 21u555 2.000000e-04 p960422a.lcd outqp960422a.lcd bbopradg -fa 21u683 2.000000e-04 p960422a.lcd outqp960422a.lcd bbopradg -fa 1xmiss 3.000000e+01 p960422a.lcd outqp960422a.lcd bbopradq -fa 1fluor 1.000000e-03 p960422a.lcd outqp960422a.lcd bbopangq 1Tilt 1Roll 10 2 inqp960422a.lcd outqp960422a.lcd bbopkq -s 1ed412 10 0.9 4.5 inqp960422a.lcd outqp960422a.lcd bbopdespike -d 1fluor 0.03 10 indqp960422a.lcd outdqp960422a.lcd bbopdespike -d 1temp 0.05 10 indqp960422a.lcd outdqp960422a.lcd bbopdespike -d 1xmiss 0.05 10 indqp960422a.lcd outdqp960422a.lcd bbopdespike -d d-1fluor 0.03 10 indqp960422a.lcd outdqp960422a.lcd bbopdespike -d d-1temp 0.05 10 indqp960422a.lcd outdqp960422a.lcd bbopdespike -d d-1xmiss 0.05 10 indqp960422a.lcd outdqp960422a.lcd bbopmovavg -f d-d-1temp 5.0 dqp960422a.lcd mdqp960422a.lcd bbopbin -b 0.5 mdqp960422a.lcd

bbopkc -s 1ed380 5 inkbmdqp960422a.lcd.1 outkbmdqp960422a.lcd.1 bbopkc -s 1ed412 5 inkbmdqp960422a.lcd.1 outkbmdqp960422a.lcd.1 bbopkc -s 1ed443 5 inkbmdqp960422a.lcd.1 outkbmdqp960422a.lcd.1 bbopkc -s 1ed490 5 inkbmdqp960422a.lcd.1 outkbmdqp960422a.lcd.1 bbopkc -s 1ed510 5 inkbmdqp960422a.lcd.1 outkbmdqp960422a.lcd.1 bbopkc -s 1ed555 5 inkbmdqp960422a.lcd.1 outkbmdqp960422a.lcd.1

XI. Appendix D - Calibration Certificates

The following pages contain the calibration certificates for the PRR600 system, and the SAFire.
SAFIRE Calibration Sheet

SAF0106 Date: 12/08/95 Calibration conducted by:CCM

Depth Offset ____NA____

Depth Scale Factor NA____

Excitation Power Output -

The excitation power output for each wavelength was obtained through direct power measurement using a calibrated pyro-electric head and a Newport Model # 8825-C Power Meter. The detector head was placed directly at the meter's transmitter window and thus the pulse energy measurement is consistant with th exact meter configuration. Pulse to pulse variation was on the order of 5-10 percent, and the values obtained were averaged over multpile pulses. With each power output reference Analog to Digital Converter Output are also provided. The reference output value directly corresponds to the measured power output. The absolute lamp output can in the future be obtained by determining the percentage change in the reference output and multiplying that by the original power meter output. The gain value represents the gain setting for the reference channel in the .dev file. Quanta normalization factors (normalized to 490 nm) are provided in the last column.

λ	μj REF	ERENCE GAIN	NORMA	LIZATION(490)
228*25	13	1213	0	0.42
265*25	17.7	7954	0	0.57
313*25	20	7954	0	0.64
375*25	8.5	4166	0	0.27
430*25	16.8	12020	0	0.54
490*25	31.3	26366	0	1

Emission Normalization -

Emission readings depend upon both the filter net transmittance and the detector responsivity throughout the passband of the filter. In order to normalize these readings absolute power readings of each emission filter output were obtained from using a Hamamatsu 4633-01 flash lamp as a source and a Newport 8225-C Power Meter as the output. These readings were then normalized for the spectral output from the lamp. The results provide emission compensation factors which correct for differences in detector responsivities as a function of wavelength. Attached figures show a uncorrected and corrected emission spectra created from 228 nm ,265 nm, 313 nm, and 340 nm excitation of a 20 ppb quinine sulfate solution. The corrected spectrum was obtained by multiplying

uncorrected emission output values by correction constants. These correction constants are supplied below.

1,

Emission λ	Correction Constant
228	20.4
265	5.84
313	6.65
340	5.18
365	6.11
400	4.46
430	2.90
460	2.82
490	2.12
510	2.01
540	2.22
590	2.43
620	0.67
650	0.88
690	1
810	1.68

_											
Bi	os	pheric	al Instru	ments In	C.						
EV	AL	UATION	FORM for	PRR Spect	roradiomet	er					
			Calibr	ation Date:	3/26/96		Form:	7/11/96			
			Mod	el Number:	PRV-600S						
			Seri	al Number:	9043						
			Stan	dard Lamp:	94531 (10/	11/95) for Irr	adiance, 94	532 (10/11/	95) for Radia	ance.	
_			Otan		Calibration	Calibration	Calibration	Calibration			
			Lamp	Immersion	Voltage -	Voltage -	Factor - Dry	Factor - Wet			
Ch	Tag	λ (nm)	Irradiance	Coefficient	Dark ³⁾	Light	(V/µW)	(V/µW)	Max E (Dry)		
		DOWNWE	ELLING IRRAD	IANCE CHANN	NELS	Irradiance Un	its: µW/cm ² ·nr	m, E = Irradian	772 8		-
1	0	380	1.486	0.677	0.000160	-0.019050	-0.012927	-0.021592	313.4		
3	0	443	3.906	0.682	0.000116	-0.126520	-0.032421	-0.022113	308.4		
4	0	490	6.483	0.690	0.000272	-0.218429	-0.033732	-0.023280	296.5		
5	0	510	7.683	0.694	0.000108	-0.250415	-0.032609	-0.022617	306.7		
6	0	555	10.536	0.701	0.000459	-0.345228	-0.032809	-0.023010	304.8	4)	
7	0	PAR"	0.0152	U.686	0.000337	-0.20064	-13.1965//	-9.050/41	0.750		
•	v	Grid.	Ca	libration Factor:	WET = ((Light	- Dark) x Imme	ers. Coeff.)/Lan	np Output			
					DRY = (Light -	Dark)/Lamp O	utput				
			Lamp		Diama		Calibration	Calibration	Calibration	Calibration	
Ch	Tac	1 (pm)	for cm	Coefficient	Reflectivity	Radiance ⁶⁾	Dark	Blocked ³⁾	Light	V/uW	Max L (Wet
GI	Tay	UPWELL	ING RADIANCI	E CHANNELS		Radiance Uni	ts: µW/cm ² ·nn	n·sr, L = Radia	nce	7	
1	1	380	1.308	1.765	0.985	0.011	0.000133	0.000133	-0.002922	-0.151959	65.8
2	1	412	2.275	1.758	0.985	0.020	0.000209	0.000202	-0.017559	-0.509911	19.6
3	1	443	3.514	1.752	0.985	0.031	0.000192	0.000186	-0.048676	-0.911268	11.0
4	1	490	7.038	1.743	0.984	0.061	0.000122	0.000261	-0.133038	-1.248987	8.0
6	1	555	9.746	1.738	0.984	0.085	0.000124	0.000083	-0.258677	-1.755312	5.7
7	1	683	16.755	1.730	0.984	0.146	0.000027	-0.000057	-0.392216	-1.555169	6.4
8	1	Gnd."	0.000124	Volts	/lama Output	v Plaqua Pofla	ativity v Lamp C	Vietance Easter	1-		
			Lamp Dis	stance Factor =	(50 cm) ² /(300	cm) ²	cuvity & Lamp L	Asid Hoe Factor,	V K		
			Cal	libration Factor:	WET = (Light	- Dark)/(Dry Ra	idiance x Imme	rsion Coefficien	nt)		
9	0	TEMPER	ATURE7, 9)		Temperature	$(^{\circ}C) = (Voltage$	e - Offset)/Sca	le			
		Scale			0.1419						
10	0	PRESSUI	RE/DEPTH		Pressure/Dec	th (dbars or n	neters) = (a x \	(oltage2) + (b)	Voltage) + c		
		Scale Fac	tor "a"		0.9374]					
		Scale Fac	ctor "b"		83.8842						
		Offset "c	TOACTUAL	VOL TACE CO	26.9635	CTOPS	use with exten	mal concere		ial)	
		NOMINAL	LIUACIUAL	Irr. Arrav	Rad. Arrav	CTORS [For	use with exte	rnai sensors,	only, see manu	Jai)	
		Scale Fac	tor	1.057679	1.074227	1					
		Offset		0.000205	0.000278	1					
		Full Scale	e Voltage	9.4547	9.3090]					
		FIRMWA	RE VERSIONS								
		Underwa	ter ROM	Tag 0 2765B	Tag 1 2043A]					
		Notes:									
		1. Annual 2. Calibrat	calibration is re tions were perfo	commended. Inmed at approxi	Imately 20 to 30	°C.					
		3) "Dark"	irradiance and "	Blocked" radian	ce values repre	esent a blocking	of the calibrati	on source. The	se values shoul	ld not be used	
		as the "	Offset" when er	ntering values in	nto the calibration	on file. Use the	totally dark sen	sor values obta	ined at the temp	perature where	
		4) PAR in	adiance units a	re µEinsteins/cr	m⁴·sec.						
		5) Nomina	I/Typical value(s).	6						
		6) For con 7) Water t	temperature ser	to solid angle, a nsor.	nactor (divisor)	or Pilis incorp	orated.				
		8) A chan	ge in depth of 1	meter in seawa	ter correspond	s to approximat	ely a 1 dbar cha	ange in pressur	е.		
		9) These	channels/senso	rs were not eva	luated during th	is service perio	d.				

Biospherical Instruments Inc. CALIBRATION CERTIFICATE for PRR Spectroradiometer

Calibration Date: 3/26/96 Model Number: PRV-600S Serial Number: 9643 Operator: JCE/LFG

:1

OPTIONAL CHANNELS

Ch Tag

11	0	Transmissometer ¹⁾	Output = (Vo	itage - Offset//Scale
		Scale Factor	1.0	Volts/Volt
		Offset	0.0	Volts
12	0	Scalar PAR: QSP-200 S/N 444321	quanta/(cm ² .	sec) = (Voltage - Offset)/Scale
		Scale Factor (Wet)	-1.161E-17	Volts/(quanta/cm ² ·sec)
		Offset	0.0009	Volts
13	0	AXIS 1 ANGLE SENSOR - "TILT"2	Degrees = (V	oltage - Offset)/Scale
		Scale Factor	0.0418	
		Offset	2.6862	
14	0	AXIS 2 ANGLE SENSOR - "ROLL"2)	Degrees = (V	oltage - Offset)/Scale
		Scale Factor	0.0415	
		Offset	2.6973	
15	0	Light Scattering Sensor ¹⁾	Output = (Vo	ltage - Offset)/Scale
		Scale Factor	1.0	Volts/Volt
		Offset	0.0	Volts
16	0	Fluorometer ¹⁾	Output = (Vo	Itage - Offset)/Scale
		Scale Factor	1.0	Volts/Volt
		Offset	0.0	Volts

Form: 7/11/96

Notes:

1) These sensors are not calibrated at BSI. When applicable, see the manufacturers' specifications.

2) These channels/sensors were not evaluated during this service period.

	•										
Bi	OSI	oheric	al Instru	ments In	c.				DC	NUT DES	TROY
~		PATIO	NCERTIFIC	ATE for PR	R Spectro	radiometer			Riosoh	arical astru	nante las
CP		Allo	CERTITIO		in opecato	autometer			Diospin	ALIRSACION	DATA
			Calibra	ation Date:	1/23/96	_	Form:	1/24/96		ALIDIALIUN	VAIA
			Mode	el Number:	PRV-600S						1
			Seria	al Number:	9643	-					2
				Operator:	JCE/LEG	-					
			Stand	lard Lamn:	91771 (05/	30/95)					
			Stant	aru Lamp.	31111 (03)	50/35)					
-			5		Calibration	Calibration	Calibration	Calibration			
			Lamp	Immersion	Voltage -	Voltage -	Factor - Dry	Factor - Wet			
Ch	Tag	λ (nm)	Irradiance	Coefficient	Dark ³⁾	Light	(V/µW)	(V/µW)	Max E (Dry)		
		DOWNW	ELLING IRRAD	ANCE CHANN	IELS	Irradiance Un	nits: µW/cm²⋅nr	n, E = Irradian	ce		
1	0	380	1.397	0.671	0.000132	-0.018129	-0.013074	-0.008775	764.9		
2	0	412	2.411	0.677	0.000516	-0.077541	-0.032371	-0.021906	308.9		
3	0	443	3.701	0.682	0.000113	-0.120950	-0.032714	-0.022313	305.7		
4	0	490	6.159	0.690	0.000302	-0.209334	-0.034039	-0.023491	293.8		
5	0	510	7.302	0.694	0.000168	-0.240489	-0.032957	-0.022859	303.4		
6	0	555	10.041	0.701	0.000465	-0.332822	-0.033194	-0.023279	301.3		
7	0	PAR4)	0.014	0.686	0.000330	-0.194557	-13 767821	-9 442522	0.726	4)	
8	0	Gnd ⁵⁾	0.000291	Volts				0.112022	0.1.20		
-		Grid.	Cal	ibration Factor	WFT = ((Light	- Dark) x Imme	ers Coeff VI am				
			Cui		DRY = (Light	Dark)/Lamp O	utput	ip output			
-			Lamp		Ditt - (Light	- Dark/Lamp O	Calibration	Calibration	Calibration	Calibration	
			Irradiance @	Immersion	Plaque		Voltage	Voltage -	Voltage	Eactor Wet	
Ch	Tag	1 (nm)	50 cm	Coefficient	Reflectivity	Radiance ⁶⁾	Dark	Blocked ³⁾	Light	N/uWA	Max I (Mot
GI	Tay		INC PADIANCE	CHANNELS	Reflectivity	Padiance IIni	ite: uW/cm ² .nm	Diockeu	Light	(0)(00)	MIGY L (AAGE
4	4	280	1 307	1 765	0.985	0.012	0.000221	0 000214	-0.003021	0 150630	66.4
2	1	412	2 411	1.758	0.985	0.071	0.000068	0.000214	0.018727	-0.150039	10.4
4	1	412	2.411	1.750	0.905	0.021	-0.000000	-0.000079	-0.010727	-0.505131	19.0
3	1	443	3.701	1.752	0.965	0.032	0.000233	0.000215	-0.050659	-0.900887	11.1
4	1	490	6.159	1.745	0.964	0.054	0.000180	0.000150	-0.092345	-0.988998	10.1
5	1	510	7.302	1.743	0.984	0.064	0.000363	0.000337	-0.136471	-1.235454	8.1
6	1	555	10.041	1.738	0.984	0.087	0.000180	0.000128	-0.263356	-1.734900	5.8
7	1	683	16.897	1.730	0.984	0.147	0.000095	-0.000003	-0.394184	-1.550051	6.5
8	1	Gnd."	0.00019	Volts							
			Ĺ	Dry Radiance =	(Lamp Output	x Plaque Refle	ctivity x Lamp D	istance Factor)	/π		
			Lamp Dis	stance Factor =	(50 cm) ² /(300	cm) ²					
			Cal	ibration Factor:	WET = (Light	- Dark)/(Dry Ra	adiance x Immer	rsion Coefficien	t)		
9	0	TEMPER	ATURE"		Temperature	(°C) = (Voltag	e - Offset)/Sca	le			
		Scale			0.1419	37					
		Offset	and the second second second		0.0801						
10	0	PRESSU	RE/DEPTH ⁸⁾		Pressure/Dep	oth (dbars or n	neters) = (a x V	oltage ²) + (b x	Voltage) + c		
		Scale Fa	ctor "a"		0.9374			• • •			
		Scale Fa	ctor "b"		83.8842	1					
		Offset "c			26.9635	1					
-		NOMINA	L TO ACTUAL	VOLTAGE CO	VERSION FA	CTCRS (For a	use with extern	al sensors, or	ly, see manua	al)	
				Irr. Array	Rad. Array				,,		
		Scale Fa	ctor [1.057679	1.074227	1					
		Offset		0.000205	0.000278	1					
		Full Scal	e Voltage	9.4547	9,3090	1					
		r un oca	e voltage [0.1011	0.0000	1					
		FIRMWA	RE VERSIONS								
				Tag 0	Tag 1						
		Underwa	ter ROM	2765B	2043A	1					
						-					
		Notes:									
		1. Annua	calibration is rec	commended.		1001					
		2. Calibra	tions were perfo	rmed at approx	mately 20 to 30	о °С.					
		3) "Dark"	irradiance and "	Blocked" radian	ce values repr	esent a blocking	g of the calibrati	on source. The	se values shoul	d not be used	
		as the	"Offset" when er	tering values in	to the calibration	on file. Use the	totally dark sen:	sor values obtai	ned at the temp	perature where	
		the ins	trument will be u	sed.							
		4) PAR ir	radiance units ar	e µEinsteins/cr	n ² ·sec.						
		5) Typica	I value(s).								
		6) For co	nversion of area	to solid angle, a	factor (divisor) of Pi is incorp	orated.				
		7) Water	temperature sen	sor.							
		8) A char	inge in depth of 1	meter in seawa	ter correspond	s to approximat	ely a 1 dbar cha	ange in pressure	e.		
						and the second se			the second se		

Biospherical Instruments Inc. CALIBRATION CERTIFICATE for PRR Spectroradiometer

Calibration Date: 1/23/96 Model Number: PRV-600S Serial Number: 9643 Operator: JCE/LFG

OPTIONAL CHANNELS

Ch	Tag	3		
11	0	Transmissometer ¹⁾	Output = (Vo	oltage - Offset)/Scale
		Scale Factor	1.0	Volts/Volt
		Offset	0.0	Volts
12	0	Scalar PAR: QSP-200 S/N 4443	quanta/(cm ²	·sec) = (Voltage - Offset)/Scale
		Scale Factor (Wet)	-1.161E-17	Volts/(quanta/cm ² ·sec)
		Offset	0.0009	Volts
13	0	AXIS 1 ANGLE SENSOR - "TILT"	Degrees = (V	/oltage - Offset)/Scale
		Scale Factor	0.0418	
		Offset	2.6862	
14	0	AXIS 2 ANGLE SENSOR - "ROLL"	Degrees = (V	/oltage - Offset)/Scale
		Scale Factor	0.0415	state in the second
		Offset	2.6973	
15	0	Light Scattering Sensor ¹⁾	Output = (Vo	htage - Offset)/Scale
		Scale Factor	1.0	Volts/Volt
		Offset	0.0	Volts
16	0	Fluorometer ¹⁾	Output = (Vo	htage - Offset)/Scale
		Scale Factor	1.0	Volts/Volt
		Offset	0.0	Volts

Form: 1/24/96

Notes:

1) These sensors are not calibrated at BSI. When applicable, see the manufacturers' specifications.

DO NOT DESTROY Biospherical astruments Inc. CA: ::: A. JN DATA **Biospherical Instruments Inc.** CALIBRATION CERTIFICATE for PRR Spectroradiometer Calibration Date: 1/24/96 Form: 1/25/96 Model Number: PRV-610 Serial Number: 9644 **Operator: JCE/LFG** Standard Lamp: 91771 (05/30/95) Calibration Calibration Calibration Voltage -Factor - Dry Voltage -Dark³⁾ Ch Tag λ (nm) Lamp Output (V/µW) Light Max E (Dry) Irradiance Units: µW/cm²·nm, E = Irradiance SURFACE IRRADIANCE CHANNELS -0.045775 0.000205 303.8 380 1.397 -0.032918 2 1 2.411 -0.000888 -0.079748 -0.032704 305.8 2 2 412 -0.000036 -0.126600 292.4 2 443 3,701 -0.034201 3 6.159 -0.000291 -0.206142 -0.033424 299.2 4 2 490 -0.000277 -0.242508 301.5 7.302 -0.033173 5 2 510 -0.328101 305.9 6 2 555 10.041 0.000142 -0.032691 4) PAR4) 0.0142 -0.000040 -0.153967 -10.874195 0.920 7 2 Gnd.5) 2 0.000095 Volts 8 Calibration Factors: DRY = (Light - Dark)/Lamp Output NOMINAL TO ACTUAL VOLTAGE CONVERSION FACTORS (For use with external sensors, only, see manual) Irr. Array 1.061494 Scale 0.000049 Offset 9.4207 **Full Scale Voltage** FIRMWARE VERSION Tag 2 2106B Surface ROM Notes: 1. Annual calibration is recommended. 2. Calibrations were made at approximately 20 to 30 °C. 3) Dark values represent a blocking of the calibration source. These values should not be used as the 'offset' when entering values into the calibration file. Use the totally dark sensor values obtained at the temperature where the instrument will be used. 4) PAR irradiance units are µEinsteins/cm²·sec. 5) Typical value(s).